钢格栅板厂家
免费服务热线

Free service

hotline

010-00000000
钢格栅板厂家
热门搜索:
技术资讯
当前位置:首页 > 技术资讯

【新闻】血液中心地埋式一体化污水处理设施1SMT贴片

发布时间:2020-10-19 04:47:41 阅读: 来源:钢格栅板厂家

血液中心地埋式一体化污水处理设施

核心提示:血液中心地埋式一体化污水处理设施,公司现有污水设备品种:一体化污水处理设备、地埋式污水处理设备、二氧化氯发生器、投加器、缓释消毒器、气浮机、固液分离机、机械格栅、加药装置等。血液中心地埋式一体化污水处理设施公司现有污水设备品种:一体化污水处理设备、地埋式污水处理设备、二氧化氯发生器、投加器、缓释消毒器、气浮机、固液分离机、机械格栅、加药装置等。

新型生物脱氮汇总近年来,短程硝化、厌氧氨氧化、好氧反硝化等新型生物脱氮过程逐渐引起人们注意,图3汇总了近年来常见新型生物脱氮理论。标红处是该项新型生物脱氮过程与传统生物脱氮过程的区别所在1 厌氧氨氧化VS好氧氨氧化传统生物脱氮中,氨氧化(即亚硝化)过程为好氧过程,细菌需要溶解氧作为电子受体实现氨氮的氧化。从1989年欧洲科学家在厌氧反应器中发现了厌氧氨氧化现象起,越来越多的厌氧氨氧化研究报告拓展了我们对于生物脱氮的认知范围。除了污水处理,厌氧氨氧化还被发现存在于地球上的多种自然环境,其对于地球范围内氮素循环的贡献不容忽视。厌氧氨氧化细菌可以在厌氧环境下以氨氮为电子供体、以亚硝酸盐为电子受体,产生氮气和少量硝酸盐。由于厌氧氨氧化菌一般呈现红色,因此也常常被称为“红菌”。厌氧氨氧化菌是自养微生物,以二氧化碳等无机物为碳源进行自身生长合成。由于厌氧氨氧化无需好氧曝气条件与有机碳源,其在曝气能耗削减与有机碳源节约方面有着显著优势,因此近年来厌氧氨氧化成为发展最迅猛的新型脱氮理论之一。由于需要亚硝酸盐作为电子受体,厌氧氨氧化常与短程硝化结合,通过短程硝化将部分氨氮氧化为亚硝酸盐,并与剩余氨氮进行厌氧氨氧化反应。

在工艺设计中,短程硝化与厌氧氨氧化过程可在同一工段进行,也可分为两段进行。目前厌氧氨氧化技术在国内外已有中试乃至实际规模运行案例,相比于主流厌氧氨氧化(污水处理的主线流程),污水处理厂的侧流(污泥处理中的消解液)厌氧氨氧化处理发展较快,这是由于侧流厌氧氨氧化过程中有机物浓度、氨氮浓度、温度等相关因素较为理想,而主流过程中则存在较多不利于厌氧氨氧化的条件,因此主流厌氧氨氧化的扩大与推广仍存在不少技术问题有待解决。此外,基于颗粒污泥技术的短程硝化-厌氧氨氧化技术也是研究热门。2短程硝化VS全程硝化传统硝化过程是从氨氮到亚硝酸盐再到硝酸盐的全程硝化,而短程硝化一般指代从氨氮到亚硝酸盐这一过程。由于氨氮和亚硝酸盐的好氧转化都需要消耗溶解氧,短程硝化相比于全程硝化可以节约曝气的电能消耗。目前,短程硝化主要存在两种主要研究方向,其一是与厌氧氨氧化偶联,由短程硝化为厌氧氨氧化中提供亚硝酸盐来源,其二是与短程反硝化偶联,实现氮素的最终去除。短程硝化的实现主要依靠选择性抑制硝化菌活性,技术原理在于亚硝化菌与硝化菌对于一些环境因素的耐受能力不同,溶解氧、pH值、温度、游离氨等因素都已被研究用以选择性抑制硝化菌,以实现短程硝化。现阶段短程硝化的主要技术问题在于:如何在不同环境下(温度、有机物含量等因素)实现对于氨氮到亚硝酸盐这一转化过程的长期稳定维持。传统生物脱氮细菌特点在实践中,大家可根据针对对象及功能菌群菌的特点,通过参数调节促进那些我们所需要的微生物的良好生长代谢氨化细菌可以利用有机物获取能量并进行生长代谢,且其在好氧和缺氧环境都可生长,这些特点使得氨化细菌生长迅速、分布广泛,在生化系统中很少成为问题所在。因此,我们主要探讨亚硝化菌、硝化菌和反硝化菌。1 亚硝化菌亚硝化菌主要参与系统中氨氮被氧化为亚硝酸盐的过程,是生化系统中氨氮去除的主要功能菌。从微生物学角度来看,亚硝化细菌是一类在好氧条件利用无机碳源合成自身菌体、利用氧化氨氮释放能量的化能(能量来源)-好氧(溶氧要求)-自养(碳源类型)细菌。针对碳源类型,亚硝化菌需要利用无机碳源进行合成代谢,亚硝化细菌生长缓慢,在生化系统中所占总量较小,因此其对于外界环境影响较为敏感,低温环境、负荷冲击、毒物流入、污泥流失等不良条件均可能导致亚硝化菌活性下降,使得系统出现氨氮去除率低,出水氨氮偏高的现象;针对能量来源和溶氧要求,亚硝化菌通过在好氧环境下氧化氨氮获取化学能供给自身的生长代谢,因此充足的溶解氧以及适宜的氨氮浓度是维持亚硝化菌良好生长的必需条件。此外,由于亚硝化过程会导致系统碱度下降,而亚硝化菌的最适pH值范围约为在7.0-7.5,因此应注意曝气池pH值,避免pH值过低导致亚硝化菌活性下降,氨氮去除不佳。2 硝化菌硝化菌主要参与系统中亚硝酸盐被氧化为硝酸盐的过程,其与亚硝化细菌经常出现在相近区域,特点也较为相似。从微生物学角度来看,硝化细菌是一类在好氧条件利用无机碳源合成自身菌体、利用氧化亚硝酸盐释放能量的化能(能量来源)-好氧(溶氧要求)-自养(碳源类型)细菌。针对碳源类型,硝化菌需要利用无机碳源进行合成导致其生长缓慢,在生化系统中所占总量较小,因此其对于外界环境影响较为敏感,低温环境、负荷冲击、毒物流入、污泥流失等不良条件均可能导致硝化菌活性下降,使得好氧池中出现亚硝酸盐积累的现象;针对能量来源和溶氧要求,硝化菌通过在好氧环境下氧化亚硝酸盐获取化学能供给自身的生长代谢,因此充足的溶解氧以及适宜的亚硝酸盐浓度(主要来自于氨氮被氧化生成的亚硝酸盐)是维持硝化菌良好生长的必需条件。此外,由于硝化过程会导致系统碱度下降,而硝化菌的最适pH值范围约为在7.0-8.0,因此应注意曝气池pH值,避免pH值过低导致硝化菌活性下降。3 反硝化菌反硝化菌主要参与系统中硝酸盐及亚硝酸盐被还原的过程,是生化系统中硝酸盐氮去除的主要功能菌。从微生物学角度来看,常规的反硝化细菌是一类在缺氧条件利用有机碳源合成自身菌体、利用氧化有机物释放能量的化能-缺氧-异养细菌。在反硝化过程中,有机物充当电子供体,硝酸盐充当电子受体,在电子传递过程中,有机物失去电子被氧化,硝酸盐得到电子被还原,化学能被释放用于微生物的合成及其他生命活动。由于反硝化菌可以利用有机碳源,其生长较快,污水处理中生化系统污泥普遍存在大量反硝化细菌,占据较大的生物量比例。因此,为了促进硝酸盐在反硝化过程中被去除,充足的有机碳源、良好的缺氧环境是必不可少的。有机碳源方面,进水提供的有机物的可生化性(BOD/COD比例)和含量(BOD/TN比例)多用于判断有机物碳源是否适宜并足够系统用于脱氮去除。溶解氧方面,由于好氧条件下氧气会取代硝酸盐充当细菌电子传递中的电子受体,导致反硝化无法顺利进行,同时好氧下反硝化细菌用于反硝化的硝酸盐还原酶及相关酶系会受到抑制,也导致反硝化无法进行。

线上股票配资

2019供热展会暖通展会

零食微商货源

亚马逊UL测试报告